Finite dimensional approximation of Riemannian path space geometry
نویسندگان
چکیده
منابع مشابه
Dimensional curvature identities on pseudo-Riemannian geometry
For a fixed n ∈ N, the curvature tensor of a pseudo-Riemannian metric, as well as its covariant derivatives, satisfy certain identities that hold on any manifold of dimension less or equal than n. In this paper, we re-elaborate recent results by Gilkey-Park-Sekigawa regarding these p-covariant curvature identities, for p = 0, 2. To this end, we use the classical theory of natural operations, th...
متن کاملIntegrable Systems in n-dimensional Riemannian Geometry
In this paper we show that if one writes down the structure equations for the evolution of a curve embedded in an n-dimensional Riemannian manifold with constant curvature this leads to a symplectic, a Hamiltonian and an hereditary operator. This gives us a natural connection between finite dimensional geometry, infinite dimensional geometry and integrable systems. Moreover one finds a Lax pair...
متن کاملSome Results on Infinite Dimensional Riemannian Geometry
In this paper we will investigate the global properties of complete Hilbert manifolds with upper and lower bounded sectional curvature. We shall prove the Focal Index lemma that will allow us to extend some classical results of finite dimensional Riemannian geometry as Rauch and Berger theorems and the Topogonov theorem in the class of manifolds in which the Hopf-Rinow theorem holds.
متن کاملUmbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms
We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...
متن کاملEntropy and Complexity of a Path in Sub-riemannian Geometry
We characterize the geometry of a path in a sub-Riemannian manifold using two metric invariants, the entropy and the complexity. The entropy of a subset A of a metric space is the minimum number of balls of a given radius ε needed to cover A. It allows one to compute the Hausdorff dimension in some cases and to bound it from above in general. We define the complexity of a path in a subRiemannia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2003
ISSN: 0022-1236
DOI: 10.1016/s0022-1236(02)00095-2